Struct nalgebra::Rotation2
[−]
[src]
pub struct Rotation2<N> { /* fields omitted */ }
Two dimensional rotation matrix.
Methods
impl<N: Clone + BaseFloat + Neg<Output=N>> Rotation2<N>
[src]
fn new(angle: Vector1<N>) -> Rotation2<N>
Builds a 2 dimensional rotation matrix from an angle in radian.
impl<N> Rotation2<N>
[src]
Trait Implementations
impl<N: Eq> Eq for Rotation2<N>
[src]
impl<N: PartialEq> PartialEq for Rotation2<N>
[src]
fn eq(&self, __arg_0: &Rotation2<N>) -> bool
This method tests for self
and other
values to be equal, and is used by ==
. Read more
fn ne(&self, __arg_0: &Rotation2<N>) -> bool
This method tests for !=
.
impl<N: Encodable> Encodable for Rotation2<N>
[src]
impl<N: Decodable> Decodable for Rotation2<N>
[src]
impl<N: Clone> Clone for Rotation2<N>
[src]
fn clone(&self) -> Rotation2<N>
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &Self)
1.0.0
Performs copy-assignment from source
. Read more
impl<N: Debug> Debug for Rotation2<N>
[src]
impl<N: Hash> Hash for Rotation2<N>
[src]
fn hash<__HN: Hasher>(&self, __arg_0: &mut __HN)
Feeds this value into the state given, updating the hasher as necessary.
fn hash_slice<H>(data: &[Self], state: &mut H) where H: Hasher
1.3.0
Feeds a slice of this type into the state provided.
impl<N: Copy> Copy for Rotation2<N>
[src]
impl<N: BaseFloat + Clone> Rotation<Vector1<N>> for Rotation2<N>
[src]
fn rotation(&self) -> Vector1<N>
Gets the rotation associated with self
.
fn inverse_rotation(&self) -> Vector1<N>
Gets the inverse rotation associated with self
.
fn append_rotation_mut(&mut self, rotation: &Vector1<N>)
Appends a rotation to this object.
fn append_rotation(&self, rotation: &Vector1<N>) -> Rotation2<N>
Appends the rotation amount
to a copy of t
.
fn prepend_rotation_mut(&mut self, rotation: &Vector1<N>)
Prepends a rotation to this object.
fn prepend_rotation(&self, rotation: &Vector1<N>) -> Rotation2<N>
Prepends the rotation amount
to a copy of t
.
fn set_rotation(&mut self, rotation: Vector1<N>)
Sets the rotation of self
.
impl<N: BaseFloat> RotationTo for Rotation2<N>
[src]
type AngleType = N
Type of the angle between two elements.
type DeltaRotationType = Rotation2<N>
Type of the rotation between two elements.
fn angle_to(&self, other: &Self) -> N
Computes an angle nedded to transform the first element to the second one using a rotation. Read more
fn rotation_to(&self, other: &Self) -> Rotation2<N>
Computes the smallest rotation needed to transform the first element to the second one.
impl<N: Rand + BaseFloat> Rand for Rotation2<N>
[src]
fn rand<R: Rng>(rng: &mut R) -> Rotation2<N>
Generates a random instance of this type using the specified source of randomness. Read more
impl<N: BaseFloat> AbsoluteRotate<Vector2<N>> for Rotation2<N>
[src]
fn absolute_rotate(&self, v: &Vector2<N>) -> Vector2<N>
This is the same as: Read more
impl<N: BaseNum> Rotate<Vector2<N>> for Rotation2<N>
[src]
fn rotate(&self, v: &Vector2<N>) -> Vector2<N>
Applies a rotation to v
.
fn inverse_rotate(&self, v: &Vector2<N>) -> Vector2<N>
Applies an inverse rotation to v
.
impl<N: BaseNum> Rotate<Point2<N>> for Rotation2<N>
[src]
fn rotate(&self, p: &Point2<N>) -> Point2<N>
Applies a rotation to v
.
fn inverse_rotate(&self, p: &Point2<N>) -> Point2<N>
Applies an inverse rotation to v
.
impl<N: BaseNum> Transform<Vector2<N>> for Rotation2<N>
[src]
fn transform(&self, v: &Vector2<N>) -> Vector2<N>
Applies a transformation to v
.
fn inverse_transform(&self, v: &Vector2<N>) -> Vector2<N>
Applies an inverse transformation to v
.
impl<N: BaseNum> Transform<Point2<N>> for Rotation2<N>
[src]
fn transform(&self, p: &Point2<N>) -> Point2<N>
Applies a transformation to v
.
fn inverse_transform(&self, p: &Point2<N>) -> Point2<N>
Applies an inverse transformation to v
.
impl<N> Dimension for Rotation2<N>
[src]
impl<N: BaseNum> Mul<Rotation2<N>> for Rotation2<N>
[src]
type Output = Rotation2<N>
The resulting type after applying the *
operator
fn mul(self, right: Rotation2<N>) -> Rotation2<N>
The method for the *
operator
impl<N: Copy + BaseNum> MulAssign<Rotation2<N>> for Rotation2<N>
[src]
fn mul_assign(&mut self, right: Rotation2<N>)
The method for the *=
operator
impl<N: BaseNum> Mul<Vector2<N>> for Rotation2<N>
[src]
type Output = Vector2<N>
The resulting type after applying the *
operator
fn mul(self, right: Vector2<N>) -> Vector2<N>
The method for the *
operator
impl<N: BaseNum> Mul<Point2<N>> for Rotation2<N>
[src]
type Output = Point2<N>
The resulting type after applying the *
operator
fn mul(self, right: Point2<N>) -> Point2<N>
The method for the *
operator
impl<N: BaseNum> One for Rotation2<N>
[src]
impl<N: BaseNum> Eye for Rotation2<N>
[src]
fn new_identity(dimension: usize) -> Rotation2<N>
Return the identity matrix of specified dimension
impl<N: Zero + BaseNum + Cast<f64> + BaseFloat> RotationMatrix<N, Vector2<N>, Vector1<N>> for Rotation2<N>
[src]
type Output = Rotation2<N>
The output rotation matrix type.
fn to_rotation_matrix(&self) -> Rotation2<N>
Gets the rotation matrix represented by self
.
impl<N: Copy + Zero> Column<Vector2<N>> for Rotation2<N>
[src]
fn ncols(&self) -> usize
The number of column of this matrix or vector.
fn column(&self, i: usize) -> Vector2<N>
Reads the i
-th column of self
.
fn set_column(&mut self, i: usize, column: Vector2<N>)
Writes the i
-th column of self
.
impl<N: Copy + Zero> Row<Vector2<N>> for Rotation2<N>
[src]
fn nrows(&self) -> usize
The number of column of self
.
fn row(&self, i: usize) -> Vector2<N>
Reads the i
-th row of self
.
fn set_row(&mut self, i: usize, row: Vector2<N>)
Writes the i
-th row of self
.
impl<N> Index<(usize, usize)> for Rotation2<N>
[src]
type Output = N
The returned type after indexing
fn index(&self, i: (usize, usize)) -> &N
The method for the indexing (Foo[Bar]
) operation
impl<N: Absolute<N>> Absolute<Matrix2<N>> for Rotation2<N>
[src]
fn abs(m: &Rotation2<N>) -> Matrix2<N>
Computes some absolute value of this object. Typically, this will make all component of a matrix or vector positive. Read more
impl<N: BaseNum> ToHomogeneous<Matrix3<N>> for Rotation2<N>
[src]
fn to_homogeneous(&self) -> Matrix3<N>
Gets the homogeneous coordinates form of this object.
impl<N: Copy> Inverse for Rotation2<N>
[src]
fn inverse_mut(&mut self) -> bool
In-place version of inverse
.
fn inverse(&self) -> Option<Rotation2<N>>
Returns the inverse of m
.
impl<N: Copy> Transpose for Rotation2<N>
[src]
fn transpose(&self) -> Rotation2<N>
Computes the transpose of a matrix.
fn transpose_mut(&mut self)
In-place version of transposed
.
impl<N: ApproxEq<N>> ApproxEq<N> for Rotation2<N>
[src]
fn approx_epsilon(_: Option<Rotation2<N>>) -> N
Default epsilon for approximation.
fn approx_ulps(_: Option<Rotation2<N>>) -> u32
Default ULPs for approximation.
fn approx_eq(&self, other: &Rotation2<N>) -> bool
Tests approximate equality.
fn approx_eq_eps(&self, other: &Rotation2<N>, epsilon: &N) -> bool
Tests approximate equality using a custom epsilon.
fn approx_eq_ulps(&self, other: &Rotation2<N>, ulps: u32) -> bool
Tests approximate equality using units in the last place (ULPs)
impl<N: Copy + Zero> Diagonal<Vector2<N>> for Rotation2<N>
[src]
fn from_diagonal(diagonal: &Vector2<N>) -> Rotation2<N>
Creates a new matrix with the given diagonal.
fn diagonal(&self) -> Vector2<N>
The diagonal of this matrix.
impl<N: Display + BaseFloat> Display for Rotation2<N>
[src]
impl<N: BaseFloat> Mul<Isometry2<N>> for Rotation2<N>
[src]
type Output = Isometry2<N>
The resulting type after applying the *
operator
fn mul(self, right: Isometry2<N>) -> Isometry2<N>
The method for the *
operator
impl<N: BaseFloat> Mul<Similarity2<N>> for Rotation2<N>
[src]
type Output = Similarity2<N>
The resulting type after applying the *
operator
fn mul(self, right: Similarity2<N>) -> Similarity2<N>
The method for the *
operator