1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
//! Rotations matrices.

use std::fmt;
use std::ops::{Mul, Neg, MulAssign, Index};
use rand::{Rand, Rng};
use num::{Zero, One};
use traits::geometry::{Rotate, Rotation, AbsoluteRotate, RotationMatrix, RotationTo, Transform,
                       ToHomogeneous, Norm, Cross};
use traits::structure::{Cast, Dimension, Row, Column, BaseFloat, BaseNum, Eye, Diagonal};
use traits::operations::{Absolute, Inverse, Transpose, ApproxEq};
use structs::vector::{Vector1, Vector2, Vector3};
use structs::point::{Point2, Point3};
use structs::matrix::{Matrix2, Matrix3, Matrix4};
#[cfg(feature="arbitrary")]
use quickcheck::{Arbitrary, Gen};


/// Two dimensional rotation matrix.
#[repr(C)]
#[derive(Eq, PartialEq, RustcEncodable, RustcDecodable, Clone, Debug, Hash, Copy)]
pub struct Rotation2<N> {
    submatrix: Matrix2<N>
}

impl<N: Clone + BaseFloat + Neg<Output = N>> Rotation2<N> {
    /// Builds a 2 dimensional rotation matrix from an angle in radian.
    pub fn new(angle: Vector1<N>) -> Rotation2<N> {
        let (sia, coa) = angle.x.sin_cos();

        Rotation2 {
            submatrix: Matrix2::new(coa.clone(), -sia, sia, coa)
        }
    }
}

impl<N: BaseFloat + Clone> Rotation<Vector1<N>> for Rotation2<N> {
    #[inline]
    fn rotation(&self) -> Vector1<N> {
        Vector1::new((-self.submatrix.m12).atan2(self.submatrix.m11.clone()))
    }

    #[inline]
    fn inverse_rotation(&self) -> Vector1<N> {
        -self.rotation()
    }

    #[inline]
    fn append_rotation_mut(&mut self, rotation: &Vector1<N>) {
        *self = Rotation::append_rotation(self, rotation)
    }

    #[inline]
    fn append_rotation(&self, rotation: &Vector1<N>) -> Rotation2<N> {
        Rotation2::new(rotation.clone()) * *self
    }

    #[inline]
    fn prepend_rotation_mut(&mut self, rotation: &Vector1<N>) {
        *self = Rotation::prepend_rotation(self, rotation)
    }

    #[inline]
    fn prepend_rotation(&self, rotation: &Vector1<N>) -> Rotation2<N> {
        *self * Rotation2::new(rotation.clone())
    }

    #[inline]
    fn set_rotation(&mut self, rotation: Vector1<N>) {
        *self = Rotation2::new(rotation)
    }
}

impl<N: BaseFloat> RotationTo for Rotation2<N> {
    type AngleType = N;
    type DeltaRotationType = Rotation2<N>;

    #[inline]
    fn angle_to(&self, other: &Self) -> N {
        self.rotation_to(other).rotation().norm()
    }

    #[inline]
    fn rotation_to(&self, other: &Self) -> Rotation2<N> {
        *other * ::inverse(self).unwrap()
    }
}

impl<N: Rand + BaseFloat> Rand for Rotation2<N> {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> Rotation2<N> {
        Rotation2::new(rng.gen())
    }
}

impl<N: BaseFloat> AbsoluteRotate<Vector2<N>> for Rotation2<N> {
    #[inline]
    fn absolute_rotate(&self, v: &Vector2<N>) -> Vector2<N> {
        // the matrix is skew-symetric, so we dont need to compute the absolute value of every
        // component.
        let m11 = ::abs(&self.submatrix.m11);
        let m12 = ::abs(&self.submatrix.m12);
        let m22 = ::abs(&self.submatrix.m22);

        Vector2::new(m11 * v.x + m12 * v.y, m12 * v.x + m22 * v.y)
    }
}

#[cfg(feature="arbitrary")]
impl<N: Arbitrary + Clone + BaseFloat + Neg<Output = N>> Arbitrary for Rotation2<N> {
    fn arbitrary<G: Gen>(g: &mut G) -> Rotation2<N> {
        Rotation2::new(Arbitrary::arbitrary(g))
    }
}


/*
 * 3d rotation
 */
/// Three dimensional rotation matrix.
#[repr(C)]
#[derive(Eq, PartialEq, RustcEncodable, RustcDecodable, Clone, Debug, Hash, Copy)]
pub struct Rotation3<N> {
    submatrix: Matrix3<N>
}


impl<N: Clone + BaseFloat> Rotation3<N> {
    /// Builds a 3 dimensional rotation matrix from an axis and an angle.
    ///
    /// # Arguments
    ///   * `axisangle` - A vector representing the rotation. Its magnitude is the amount of rotation
    ///   in radian. Its direction is the axis of rotation.
    pub fn new(axisangle: Vector3<N>) -> Rotation3<N> {
        if ::is_zero(&Norm::norm_squared(&axisangle)) {
            ::one()
        }
        else {
            let mut axis   = axisangle;
            let angle      = axis.normalize_mut();
            let _1: N      = ::one();
            let ux         = axis.x.clone();
            let uy         = axis.y.clone();
            let uz         = axis.z.clone();
            let sqx        = ux * ux;
            let sqy        = uy * uy;
            let sqz        = uz * uz;
            let (sin, cos) = angle.sin_cos();
            let one_m_cos  = _1 - cos;

            Rotation3 {
                submatrix: Matrix3::new(
                            (sqx + (_1 - sqx) * cos),
                            (ux * uy * one_m_cos - uz * sin),
                            (ux * uz * one_m_cos + uy * sin),

                            (ux * uy * one_m_cos + uz * sin),
                            (sqy + (_1 - sqy) * cos),
                            (uy * uz * one_m_cos - ux * sin),

                            (ux * uz * one_m_cos - uy * sin),
                            (uy * uz * one_m_cos + ux * sin),
                            (sqz + (_1 - sqz) * cos))
            }
        }
    }

    /// Builds a rotation matrix from an orthogonal matrix.
    ///
    /// This is unsafe because the orthogonality of `matrix` is not checked.
    pub unsafe fn new_with_matrix(matrix: Matrix3<N>) -> Rotation3<N> {
        Rotation3 {
            submatrix: matrix
        }
    }

    /// Creates a new rotation from Euler angles.
    ///
    /// The primitive rotations are applied in order: 1 roll − 2 pitch − 3 yaw.
    pub fn new_with_euler_angles(roll: N, pitch: N, yaw: N) -> Rotation3<N> {
        let (sr, cr) = roll.sin_cos();
        let (sp, cp) = pitch.sin_cos();
        let (sy, cy) = yaw.sin_cos();

        unsafe {
            Rotation3::new_with_matrix(
                Matrix3::new(
                    cy * cp, cy * sp * sr - sy * cr, cy * sp * cr + sy * sr,
                    sy * cp, sy * sp * sr + cy * cr, sy * sp * cr - cy * sr,
                    -sp,     cp * sr,                cp * cr
                )
            )
        }
    }
}

impl<N: Clone + BaseFloat> Rotation3<N> {
    /// Creates a rotation that corresponds to the local frame of an observer standing at the
    /// origin and looking toward `dir`.
    ///
    /// It maps the view direction `dir` to the positive `z` axis.
    ///
    /// # Arguments
    ///   * dir - The look direction, that is, direction the matrix `z` axis will be aligned with.
    ///   * up - The vertical direction. The only requirement of this parameter is to not be
    ///   collinear
    ///   to `dir`. Non-collinearity is not checked.
    #[inline]
    pub fn new_observer_frame(dir: &Vector3<N>, up: &Vector3<N>) -> Rotation3<N> {
        let zaxis = Norm::normalize(dir);
        let xaxis = Norm::normalize(&Cross::cross(up, &zaxis));
        let yaxis = Norm::normalize(&Cross::cross(&zaxis, &xaxis));

        unsafe {
            Rotation3::new_with_matrix(Matrix3::new(
                xaxis.x.clone(), yaxis.x.clone(), zaxis.x.clone(),
                xaxis.y.clone(), yaxis.y.clone(), zaxis.y.clone(),
                xaxis.z        , yaxis.z        , zaxis.z))
        }
    }


    /// Builds a right-handed look-at view matrix without translation.
    ///
    /// This conforms to the common notion of right handed look-at matrix from the computer
    /// graphics community.
    ///
    /// # Arguments
    ///   * eye - The eye position.
    ///   * target - The target position.
    ///   * up - A vector approximately aligned with required the vertical axis. The only
    ///   requirement of this parameter is to not be collinear to `target - eye`.
    #[inline]
    pub fn look_at_rh(dir: &Vector3<N>, up: &Vector3<N>) -> Rotation3<N> {
        Rotation3::new_observer_frame(&(-*dir), up).inverse().unwrap()
    }

    /// Builds a left-handed look-at view matrix without translation.
    ///
    /// This conforms to the common notion of left handed look-at matrix from the computer
    /// graphics community.
    ///
    /// # Arguments
    ///   * eye - The eye position.
    ///   * target - The target position.
    ///   * up - A vector approximately aligned with required the vertical axis. The only
    ///   requirement of this parameter is to not be collinear to `target - eye`.
    #[inline]
    pub fn look_at_lh(dir: &Vector3<N>, up: &Vector3<N>) -> Rotation3<N> {
        Rotation3::new_observer_frame(&(*dir), up).inverse().unwrap()
    }
}

impl<N: Clone + BaseFloat + Cast<f64>>
Rotation<Vector3<N>> for Rotation3<N> {
    #[inline]
    fn rotation(&self) -> Vector3<N> {
        let angle = ((self.submatrix.m11 + self.submatrix.m22 + self.submatrix.m33 - ::one()) / Cast::from(2.0)).acos();

        if angle != angle {
            // FIXME: handle that correctly
            ::zero()
        }
        else if ::is_zero(&angle) {
            ::zero()
        }
        else {
            let m32_m23 = self.submatrix.m32 - self.submatrix.m23;
            let m13_m31 = self.submatrix.m13 - self.submatrix.m31;
            let m21_m12 = self.submatrix.m21 - self.submatrix.m12;

            let denom = (m32_m23 * m32_m23 + m13_m31 * m13_m31 + m21_m12 * m21_m12).sqrt();

            if ::is_zero(&denom) {
                // XXX: handle that properly
                // panic!("Internal error: singularity.")
                ::zero()
            }
            else {
                let a_d = angle / denom;

                Vector3::new(m32_m23 * a_d, m13_m31 * a_d, m21_m12 * a_d)
            }
        }
    }

    #[inline]
    fn inverse_rotation(&self) -> Vector3<N> {
        -self.rotation()
    }


    #[inline]
    fn append_rotation_mut(&mut self, rotation: &Vector3<N>) {
        *self = Rotation::append_rotation(self, rotation)
    }

    #[inline]
    fn append_rotation(&self, axisangle: &Vector3<N>) -> Rotation3<N> {
        Rotation3::new(axisangle.clone()) * *self
    }

    #[inline]
    fn prepend_rotation_mut(&mut self, rotation: &Vector3<N>) {
        *self = Rotation::prepend_rotation(self, rotation)
    }

    #[inline]
    fn prepend_rotation(&self, axisangle: &Vector3<N>) -> Rotation3<N> {
        *self * Rotation3::new(axisangle.clone())
    }

    #[inline]
    fn set_rotation(&mut self, axisangle: Vector3<N>) {
        *self = Rotation3::new(axisangle)
    }
}

impl<N: BaseFloat> RotationTo for Rotation3<N> {
    type AngleType = N;
    type DeltaRotationType = Rotation3<N>;

    #[inline]
    fn angle_to(&self, other: &Self) -> N {
        // FIXME: refactor to avoid the normalization of the rotation axisangle vector.
        self.rotation_to(other).rotation().norm()
    }

    #[inline]
    fn rotation_to(&self, other: &Self) -> Rotation3<N> {
        *other * ::inverse(self).unwrap()
    }
}

impl<N: Clone + Rand + BaseFloat> Rand for Rotation3<N> {
    #[inline]
    fn rand<R: Rng>(rng: &mut R) -> Rotation3<N> {
        Rotation3::new(rng.gen())
    }
}

impl<N: BaseFloat> AbsoluteRotate<Vector3<N>> for Rotation3<N> {
    #[inline]
    fn absolute_rotate(&self, v: &Vector3<N>) -> Vector3<N> {
        Vector3::new(
            ::abs(&self.submatrix.m11) * v.x + ::abs(&self.submatrix.m12) * v.y + ::abs(&self.submatrix.m13) * v.z,
            ::abs(&self.submatrix.m21) * v.x + ::abs(&self.submatrix.m22) * v.y + ::abs(&self.submatrix.m23) * v.z,
            ::abs(&self.submatrix.m31) * v.x + ::abs(&self.submatrix.m32) * v.y + ::abs(&self.submatrix.m33) * v.z)
    }
}

#[cfg(feature="arbitrary")]
impl<N: Arbitrary + Clone + BaseFloat> Arbitrary for Rotation3<N> {
    fn arbitrary<G: Gen>(g: &mut G) -> Rotation3<N> {
        Rotation3::new(Arbitrary::arbitrary(g))
    }
}


/*
 * Common implementations.
 */

submat_impl!(Rotation2, Matrix2);
rotate_impl!(Rotation2, Vector2, Point2);
transform_impl!(Rotation2, Vector2, Point2);
dim_impl!(Rotation2, 2);
rotation_mul_rotation_impl!(Rotation2);
rotation_mul_vec_impl!(Rotation2, Vector2);
vec_mul_rotation_impl!(Rotation2, Vector2);
rotation_mul_point_impl!(Rotation2, Point2);
point_mul_rotation_impl!(Rotation2, Point2);
one_impl!(Rotation2);
eye_impl!(Rotation2);
rotation_matrix_impl!(Rotation2, Vector2, Vector1);
column_impl!(Rotation2, Vector2);
row_impl!(Rotation2, Vector2);
index_impl!(Rotation2);
absolute_impl!(Rotation2, Matrix2);
to_homogeneous_impl!(Rotation2, Matrix3);
inverse_impl!(Rotation2);
transpose_impl!(Rotation2);
approx_eq_impl!(Rotation2);
diag_impl!(Rotation2, Vector2);
rotation_display_impl!(Rotation2);

submat_impl!(Rotation3, Matrix3);
rotate_impl!(Rotation3, Vector3, Point3);
transform_impl!(Rotation3, Vector3, Point3);
dim_impl!(Rotation3, 3);
rotation_mul_rotation_impl!(Rotation3);
rotation_mul_vec_impl!(Rotation3, Vector3);
vec_mul_rotation_impl!(Rotation3, Vector3);
rotation_mul_point_impl!(Rotation3, Point3);
point_mul_rotation_impl!(Rotation3, Point3);
one_impl!(Rotation3);
eye_impl!(Rotation3);
rotation_matrix_impl!(Rotation3, Vector3, Vector3);
column_impl!(Rotation3, Vector3);
row_impl!(Rotation3, Vector3);
index_impl!(Rotation3);
absolute_impl!(Rotation3, Matrix3);
to_homogeneous_impl!(Rotation3, Matrix4);
inverse_impl!(Rotation3);
transpose_impl!(Rotation3);
approx_eq_impl!(Rotation3);
diag_impl!(Rotation3, Vector3);
rotation_display_impl!(Rotation3);