Struct num::rational::Ratio
[−]
[src]
pub struct Ratio<T> { /* fields omitted */ }
Represents the ratio between 2 numbers.
Methods
impl<T> Ratio<T> where T: Clone + Integer
fn from_integer(t: T) -> Ratio<T>
[−]
Creates a ratio representing the integer t
.
fn new_raw(numer: T, denom: T) -> Ratio<T>
[−]
Creates a ratio without checking for denom == 0
or reducing.
fn new(numer: T, denom: T) -> Ratio<T>
[−]
Create a new Ratio. Fails if denom == 0
.
fn to_integer(&self) -> T
[−]
Converts to an integer.
fn numer(&'a self) -> &'a T
[−]
Gets an immutable reference to the numerator.
fn denom(&'a self) -> &'a T
[−]
Gets an immutable reference to the denominator.
fn is_integer(&self) -> bool
[−]
Returns true if the rational number is an integer (denominator is 1).
fn reduced(&self) -> Ratio<T>
[−]
Returns a reduce
d copy of self.
fn recip(&self) -> Ratio<T>
[−]
Returns the reciprocal.
fn floor(&self) -> Ratio<T>
[−]
Rounds towards minus infinity.
fn ceil(&self) -> Ratio<T>
[−]
Rounds towards plus infinity.
fn round(&self) -> Ratio<T>
[−]
Rounds to the nearest integer. Rounds half-way cases away from zero.
fn trunc(&self) -> Ratio<T>
[−]
Rounds towards zero.
fn fract(&self) -> Ratio<T>
[−]
Returns the fractional part of a number.
impl<T> Ratio<T> where T: Clone + Integer + PrimInt
impl Ratio<BigInt>
fn from_float<T>(f: T) -> Option<Ratio<BigInt>> where T: Float
[−]
Converts a float into a rational number.
Trait Implementations
impl<'a, 'b, T> Mul<&'b Ratio<T>> for &'a Ratio<T> where T: Clone + Integer
type Output = Ratio<T>
The resulting type after applying the *
operator
fn mul(self, rhs: &Ratio<T>) -> Ratio<T>
[−]
The method for the *
operator
impl<T> Mul<Ratio<T>> for Ratio<T> where T: Clone + Integer
type Output = Ratio<T>
The resulting type after applying the *
operator
fn mul(self, other: Ratio<T>) -> Ratio<T>
[−]
The method for the *
operator
impl<'a, T> Mul<Ratio<T>> for &'a Ratio<T> where T: Clone + Integer
type Output = Ratio<T>
The resulting type after applying the *
operator
fn mul(self, other: Ratio<T>) -> Ratio<T>
[−]
The method for the *
operator
impl<'a, T> Mul<&'a Ratio<T>> for Ratio<T> where T: Clone + Integer
type Output = Ratio<T>
The resulting type after applying the *
operator
fn mul(self, other: &Ratio<T>) -> Ratio<T>
[−]
The method for the *
operator
impl<'a, 'b, T> Sub<&'b Ratio<T>> for &'a Ratio<T> where T: Clone + Integer
impl<T> Sub<Ratio<T>> for Ratio<T> where T: Clone + Integer
impl<'a, T> Sub<Ratio<T>> for &'a Ratio<T> where T: Clone + Integer
impl<'a, T> Sub<&'a Ratio<T>> for Ratio<T> where T: Clone + Integer
impl<T> Signed for Ratio<T> where T: Clone + Integer + Signed
fn abs(&self) -> Ratio<T>
[−]
Computes the absolute value. Read more
fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T>
[−]
The positive difference of two numbers. Read more
fn signum(&self) -> Ratio<T>
[−]
Returns the sign of the number. Read more
fn is_positive(&self) -> bool
[−]
Returns true if the number is positive and false if the number is zero or negative.
fn is_negative(&self) -> bool
[−]
Returns true if the number is negative and false if the number is zero or positive.
impl<T> Ord for Ratio<T> where T: Clone + Integer
impl<T> One for Ratio<T> where T: Clone + Integer
impl<'a, 'b, T> Div<&'b Ratio<T>> for &'a Ratio<T> where T: Clone + Integer
impl<T> Div<Ratio<T>> for Ratio<T> where T: Clone + Integer
impl<'a, T> Div<Ratio<T>> for &'a Ratio<T> where T: Clone + Integer
impl<'a, T> Div<&'a Ratio<T>> for Ratio<T> where T: Clone + Integer
impl<T> Zero for Ratio<T> where T: Clone + Integer
fn zero() -> Ratio<T>
[−]
Returns the additive identity element of Self
, 0
. Read more
fn is_zero(&self) -> bool
[−]
Returns true
if self
is equal to the additive identity.
impl<T> Display for Ratio<T> where T: Display + Eq + One
fn fmt(&self, f: &mut Formatter) -> Result<(), Error>
[−]
Renders as numer/denom
. If denom=1, renders as numer.
impl<T> Decodable for Ratio<T> where T: Decodable
impl<T> Hash for Ratio<T> where T: Hash
impl<T> Neg for Ratio<T> where T: Clone + Integer + Neg<Output=T>
impl<'a, T> Neg for &'a Ratio<T> where T: Clone + Integer + Neg<Output=T>
impl<'a, 'b, T> Add<&'b Ratio<T>> for &'a Ratio<T> where T: Clone + Integer
impl<T> Add<Ratio<T>> for Ratio<T> where T: Clone + Integer
impl<'a, T> Add<Ratio<T>> for &'a Ratio<T> where T: Clone + Integer
impl<'a, T> Add<&'a Ratio<T>> for Ratio<T> where T: Clone + Integer
impl<T> PartialEq<Ratio<T>> for Ratio<T> where T: Clone + Integer
impl<T> Encodable for Ratio<T> where T: Encodable
impl<T> PartialOrd<Ratio<T>> for Ratio<T> where T: Clone + Integer
fn partial_cmp(&self, other: &Ratio<T>) -> Option<Ordering>
impl<'a, 'b, T> Rem<&'b Ratio<T>> for &'a Ratio<T> where T: Clone + Integer
impl<T> Rem<Ratio<T>> for Ratio<T> where T: Clone + Integer
impl<'a, T> Rem<Ratio<T>> for &'a Ratio<T> where T: Clone + Integer
impl<'a, T> Rem<&'a Ratio<T>> for Ratio<T> where T: Clone + Integer
impl<T> FromStr for Ratio<T> where T: Clone + FromStr + Integer
type Err = ParseRatioError
fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError>
[−]
Parses numer/denom
or just numer
.
impl<T> Debug for Ratio<T> where T: Debug
impl<T> Num for Ratio<T> where T: Clone + Integer
type FromStrRadixErr = ParseRatioError
fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError>
[−]
Parses numer/denom
where the numbers are in base radix
.