1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
//! Traits of operations having a well-known or explicit geometric meaning.

use std::ops::{Neg, Mul};
use traits::structure::{BaseFloat, SquareMatrix};

/// Trait of object which represent a translation, and to wich new translation
/// can be appended.
pub trait Translation<V> {
    // FIXME: add a "from translation: translantion(V) -> Self ?
    /// Gets the translation associated with this object.
    fn translation(&self) -> V;

    /// Gets the inverse translation associated with this object.
    fn inverse_translation(&self) -> V;

    /// Appends a translation to this object.
    fn append_translation_mut(&mut self, &V);

    /// Appends the translation `amount` to a copy of `t`.
    fn append_translation(&self, amount: &V) -> Self;

    /// Prepends a translation to this object.
    fn prepend_translation_mut(&mut self, &V);

    /// Prepends the translation `amount` to a copy of `t`.
    fn prepend_translation(&self, amount: &V) -> Self;

    /// Sets the translation.
    fn set_translation(&mut self, V);
}

/// Trait of objects able to translate other objects. This is typically
/// implemented by vectors to translate points.
pub trait Translate<V> {
    /// Apply a translation to an object.
    fn translate(&self, &V) -> V;

    /// Apply an inverse translation to an object.
    fn inverse_translate(&self, &V) -> V;
}

/// Trait of object which can represent a rotation, and to which new rotations can be appended. A
/// rotation is assumed to be an isometry without translation and without reflexion.
pub trait Rotation<V> {
    /// Gets the rotation associated with `self`.
    fn rotation(&self) -> V;

    /// Gets the inverse rotation associated with `self`.
    fn inverse_rotation(&self) -> V;

    /// Appends a rotation to this object.
    fn append_rotation_mut(&mut self, &V);

    /// Appends the rotation `amount` to a copy of `t`.
    fn append_rotation(&self, amount: &V) -> Self;

    /// Prepends a rotation to this object.
    fn prepend_rotation_mut(&mut self, &V);

    /// Prepends the rotation `amount` to a copy of `t`.
    fn prepend_rotation(&self, amount: &V) -> Self;

    /// Sets the rotation of `self`.
    fn set_rotation(&mut self, V);
}

/// Trait of object that can be rotated to be superimposed with another one of the same nature.
pub trait RotationTo {
    /// Type of the angle between two elements.
    type AngleType;

    /// Type of the rotation between two elements.
    type DeltaRotationType;

    /// Computes an angle nedded to transform the first element to the second one using a
    /// rotation.
    fn angle_to(&self, other: &Self) -> Self::AngleType;

    /// Computes the smallest rotation needed to transform the first element to the second one.
    fn rotation_to(&self, other: &Self) -> Self::DeltaRotationType;
}

/// Trait of objects able to rotate other objects.
///
/// This is typically implemented by matrices which rotate vectors.
pub trait Rotate<V> {
    /// Applies a rotation to `v`.
    fn rotate(&self, v: &V) -> V;

    /// Applies an inverse rotation to `v`.
    fn inverse_rotate(&self, v: &V) -> V;
}

/// Various composition of rotation and translation.
///
/// Utilities to make rotations with regard to a point different than the origin.  All those
/// operations are the composition of rotations and translations.
///
/// Those operations are automatically implemented in term of the `Rotation` and `Translation`
/// traits.
pub trait RotationWithTranslation<LV: Neg<Output = LV> + Copy, AV>: Rotation<AV> + Translation<LV> + Sized {
    /// Applies a rotation centered on a specific point.
    ///
    /// # Arguments
    ///   * `t` - the object to be rotated.
    ///   * `amount` - the rotation to apply.
    ///   * `point` - the center of rotation.
    #[inline]
    fn append_rotation_wrt_point(&self, amount: &AV, center: &LV) -> Self {
        let mut res = Translation::append_translation(self, &-*center);

        res.append_rotation_mut(amount);
        res.append_translation_mut(center);

        res
    }

    /// Rotates `self` using a specific center of rotation.
    ///
    /// The rotation is applied in-place.
    ///
    /// # Arguments
    ///   * `amount` - the rotation to be applied
    ///   * `center` - the new center of rotation
    #[inline]
    fn append_rotation_wrt_point_mut(&mut self, amount: &AV, center: &LV) {
        self.append_translation_mut(&-*center);
        self.append_rotation_mut(amount);
        self.append_translation_mut(center);
    }

    /// Applies a rotation centered on the translation of `m`.
    /// 
    /// # Arguments
    ///   * `t` - the object to be rotated.
    ///   * `amount` - the rotation to apply.
    #[inline]
    fn append_rotation_wrt_center(&self, amount: &AV) -> Self {
        RotationWithTranslation::append_rotation_wrt_point(self, amount, &self.translation())
    }

    /// Applies a rotation centered on the translation of `m`.
    ///
    /// The rotation os applied on-place.
    ///
    /// # Arguments
    ///   * `amount` - the rotation to apply.
    #[inline]
    fn append_rotation_wrt_center_mut(&mut self, amount: &AV) {
        let center = self.translation();
        self.append_rotation_wrt_point_mut(amount, &center)
    }
}

impl<LV: Neg<Output = LV> + Copy, AV, M: Rotation<AV> + Translation<LV>> RotationWithTranslation<LV, AV> for M {
}

/// Trait of transformation having a rotation extractable as a rotation matrix. This can typically
/// be implemented by quaternions to convert them to a rotation matrix.
pub trait RotationMatrix<N, LV: Mul<Self::Output, Output = LV>, AV> : Rotation<AV> {
    /// The output rotation matrix type.
    type Output: SquareMatrix<N, LV> + Rotation<AV>;

    /// Gets the rotation matrix represented by `self`.
    fn to_rotation_matrix(&self) -> Self::Output;
}

/// Composition of a rotation and an absolute value.
///
/// The operation is accessible using the `RotationMatrix`, `Absolute`, and `RMul` traits, but
/// doing so is not easy in generic code as it can be a cause of type over-parametrization.
pub trait AbsoluteRotate<V> {
    /// This is the same as:
    ///
    /// ```.ignore
    ///     self.rotation_matrix().absolute().rmul(v)
    /// ```
    fn absolute_rotate(&self, v: &V) -> V;
}

/// Trait of object which represent a transformation, and to which new transformations can
/// be appended.
///
/// A transformation is assumed to be an isometry without reflexion.
pub trait Transformation<M> {
    /// Gets the transformation of `self`.
    fn transformation(&self) -> M;

    /// Gets the inverse transformation of `self`.
    fn inverse_transformation(&self) -> M;

    /// Appends a transformation to this object.
    fn append_transformation_mut(&mut self, &M);

    /// Appends the transformation `amount` to a copy of `t`.
    fn append_transformation(&self, amount: &M) -> Self;

    /// Prepends a transformation to this object.
    fn prepend_transformation_mut(&mut self, &M);

    /// Prepends the transformation `amount` to a copy of `t`.
    fn prepend_transformation(&self, amount: &M) -> Self;

    /// Sets the transformation of `self`.
    fn set_transformation(&mut self, M);
}

/// Trait of objects able to transform other objects.
///
/// This is typically implemented by matrices which transform vectors.
pub trait Transform<V> {
    /// Applies a transformation to `v`.
    fn transform(&self, &V) -> V;

    /// Applies an inverse transformation to `v`.
    fn inverse_transform(&self, &V) -> V;
}

/// Traits of objects having a dot product.
pub trait Dot<N> {
    /// Computes the dot (inner) product of two vectors.
    #[inline]
    fn dot(&self, other: &Self) -> N;
}

/// Traits of objects having an euclidian norm.
pub trait Norm<N: BaseFloat> {
    /// Computes the norm of `self`.
    #[inline]
    fn norm(&self) -> N {
        self.norm_squared().sqrt()
    }

    /// Computes the squared norm of `self`.
    ///
    /// This is usually faster than computing the norm itself.
    fn norm_squared(&self) -> N;

    /// Gets the normalized version of a copy of `v`.
    fn normalize(&self) -> Self;

    /// Normalizes `self`.
    fn normalize_mut(&mut self) -> N;
}

/**
 * Trait of elements having a cross product.
 */
pub trait Cross {
    /// The cross product output.
    type CrossProductType;

    /// Computes the cross product between two elements (usually vectors).
    fn cross(&self, other: &Self) -> Self::CrossProductType;
}

/**
 * Trait of elements having a cross product operation which can be expressed as a matrix.
 */
pub trait CrossMatrix<M> {
    /// The matrix associated to any cross product with this vector. I.e. `v.cross(anything)` =
    /// `v.cross_matrix().rmul(anything)`.
    fn cross_matrix(&self) -> M;
}

/// Traits of objects which can be put in homogeneous coordinates form.
pub trait ToHomogeneous<U> {
    /// Gets the homogeneous coordinates form of this object.
    fn to_homogeneous(&self) -> U;
}

/// Traits of objects which can be build from an homogeneous coordinate form.
pub trait FromHomogeneous<U> {
    /// Builds an object from its homogeneous coordinate form.
    ///
    /// Note that this this is not required that `from` is the inverse of `to_homogeneous`.
    /// Typically, `from` will remove some informations unrecoverable by `to_homogeneous`.
    fn from(&U) -> Self;
}

/// Trait of vectors able to sample a unit sphere.
///
/// The number of sample must be sufficient to approximate a sphere using a support mapping
/// function.
pub trait UniformSphereSample : Sized {
    /// Iterate through the samples.
    fn sample<F: FnMut(Self)>(F);
}

/// The zero element of a vector space, seen as an element of its embeding affine space.
// XXX: once associated types are suported, move this to the `AnyPoint` trait.
pub trait Origin {
    /// The trivial origin.
    fn origin() -> Self;
    /// Returns true if this points is exactly the trivial origin.
    fn is_origin(&self) -> bool;
}